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Books Southampton

1) G. Schmid - Nanoparticles: From Theory to Applications, Wiley 2004

2) F. Caruso - Colloids and Colloid Assemblies, Wiley 2004

3) G. Cao - Nanostructures and Nanomaterials, Imperial College press 2004

4) G. L. Hornyak, J. Dutta, H.F. Tibbals, A. K. Rae, -- Introduction to Nanoscience,
Taylor and Francis Group 2008

5) G.A. Ozin, A.C. Arsenault, L. Cademartiri - Nanochemistry: A Chemical
Approach to Nanomaterials, RSC Publishing, 2" edition, 2009

6) I|. W. Hamley - Introduction to Soft Matter, Wiley, 2000

7) E. W. Wolf - Nanophysics and Nanotechnology, Wiley 2006

Other resources: Recent publications, Reviews and articles
The material will be at the following web page

For teaching material see http://www.licn.phys.soton.ac.uk/Teaching.php
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Nanoscience - a multidisciplinary approach Southampton

1. Preparation of functional materials
(chemistry-engineering)

2. Fabrication of equipment
(Microscopy, etc.)
(Physics, engineering)

3. Understanding of their properties
(chemistry, physics, biology/Medicine,
engineering)

4. Implementation in applications-
commercialization
(chemistry, physics, biology/Medicine,
engineering)
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Course Plan Southampton

Characterization and fabrication techniques

Applications

Nanoparticles- Chemical Synthesis/Properties

Self-assembly
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What are nanoparticles ? Sout ampton

Particles of any substance and shape in the size range of one to several
nanometres (10-°m) are called nanoparticles.
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Some other definitions in Nanoscience l%NWHSWYOF

Southampton

Colloidal nanoparticles- Nanoparticles evenly distributed in a Colloidal Nanoparticles
solution
Nanocrystals—- Nanoparticles in an ordered crystalline form @ @
(term nanoparticles is also used). @

Cluster -A crystal of only few atoms (normally of size less than 1 nm) @ @

Nucleation- The gathering of atoms to form a cluster (or nucleus)

The gathering and precipitation of colloidal nanoparticles).

Aggregation- 9 € L T .
(Agglomeration is also used to indicate the beginning of aggregation)

) 00000 ¢

Self-assembly- organization

Ligand/surfactant- A molecule that can interact with the surface of a nanoparticle __ olecule
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Differences between nanoparticles and the bulk



Nanoparticles vs. Solids

Effect of size on the properties of a material
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Melting temperature UNIVERSITY OF

Southampton
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Nanocrystals melt at much lower temperatures than those
required for extended solids because of the large fraction of
(more reactive) surface atoms J. Phys. Chem. 1996, 100, 13226. °
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J. Phys. Chem., Vol. 100, No. 31, 1996

Rock salt

-Phase stability

In nanocrystals, the contribution of the surface energy to
the total energy of nanocrystal formation is not any more
negligible with respect to lattice energy

—-Phase transitions _ _

Nanocrystals are usually so small that the probability of Size dependence of the wurtzite to rock salt
occurrence of defects inside them is much lower than in pressure-induced structural transformation
bulk solids. Therefore phase transition happens in higher

pressures via different mechanisms.

). Phys. Chem. 1996, 100, 13226. :©
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Why nanoparticles are important ? out ampt()n

The reason is that nanoparticles have physical, optical, magnetic, electrical, and
mechanical properties which are different from the bulk.

— @

Gold Bulk Colloidal Gold nanoparticles

11
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Colloidal nanoparticles SOUthamptOn

-by changing their size, shape and chemical composition.
-by carefully selecting the appropriate surface functionality.

We can ‘tune’ their properties and take advantage of them in
several fields of science.

12
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Metal Nanoparticles

Optical properties
Electronic properties
Catalytic properties
Thermal properties

13



Optical properties of metal particles, through centuries HJN'VERS'TYOF

Southampton

Medicinal use.
India since ca. 2000 BC
“Gold Bhasma’.

Baidyanath

Medieval times RUMARTHO

Roman Lycurgus cup -4th century

ENRICHED WITH FURE GOLD
MOST EFFECTIVE IN
CHRONIC JOINT PAINS

Changes colour when held up to the light

14



Size dependent properties-
Gold nanocrystals
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Mie theory for homogenous spherical nanoparticles
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Size and shape dependent optical properties HNIVERSITYOF

ampton

Sout

Transmitted light Reflected light

The size, shape of the particles and the viewing conditions determine the
colour we see. The gold particles in the test tubes on the left are shown

in transmitted light, while the image on the right shows the same gold
nanoparticles viewed in reflected light.
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Strong surface plasmon enhanced absorption and scattering

Contrast agents in biomedicine
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1,8 x 10-14 m?

UNIVERSITY OF

o
»

20 nm 40 nm
(a) (b)
1.0\ 251
- 0.8 - 2.0
2 5 2
@ 0.6F —~ o 151
© 2
m 0.4 m 1.0
0.2+ 0.5
ol ]_________--_.--_______‘:‘T_‘i‘?‘fr ol
| | | | | | |
400 500 600 700 800 400 500 600 700 800
Wavelength (nm) Wavelength (nm)
(© (d)
6.0 1.0
> 451 §0.8
& ®
VT 8
<

1.5

.O
n

Fluorescein: emission coefficient ~ 9.2 x 104 M1 cm?

80 nm Au NPs: molar scattering coefficient ~ 3.2 x 101° M1 cm!

T | | | | | | | | | I |
400 500 600 700 800 400 500 600 700 80
Wavelength (nm) Wavelength (nm)

80 nm
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Scattering
Larger particles>> 40 nm

Absorption

Particles<< 40 nm
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Optical properties of gold nanoparticles ONIVERSITY OF
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ollective oscillation of the
conduction electrons

Smaller distance -> stronger coupling -> redshift

20




Colloidal Nanocrystals: Shape-Dependent Properties UNIVERSITY OF
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Ag Triangular Plates

Yin, Alivisatos, Nature, 2005, 437, Washio, Xiong, Yin, Xia, Adv. Mater. 2006, 18, Sun, Xia, Science, 2002, 298.
664. 1745. 2176.

Ag Bipyramids . .

i E'jJ/\'A' A

Extinction Efficiency

1 1 i —
500 600 700
v Wavelength (nm) o1
Wiley, Xiong, Li, Yin, Xia, Nano Lett. 2006, 6, 765. Haes, Haynes, McFarland, Schatz, Van Duyne, Zou, MRS Bull. 2005, 30, 368.
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Optical Properties of silver colloidal NIVERSITY OF
nanoparticles- a qualitative approach Southampton
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-Stronger localization of charge-(sharper corners)
(more red-shifting)

-Stronger dipoles (higher shape symmetry) the
more intense the peaks

-Number of peaks is correlated with the number
of ways that electron density can be polarized
(lower shape symmetry-more peaks)

22
See Angew. Chem. Int. Ed. 2008, 47, 2-46



Optical Properties

Rules

See Angew. Chem. Int. Ed. 2008, 47, 2-46

-Stronger localization of charge-(sharper

corners) (more red-shifting)

-Stronger dipoles (higher shape symmetry) the

more intense the peaks

-Number of peaks is correlated with the number
of ways that electron density can be polarized

(lower shape symmetry-more peaks)
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Optical Properties

Rules

-Stronger localization of charge-(sharper corners)

(more red-shifting)

-Stronger dipoles (higher shape symmetry) the

more intense the peaks

-Number of peaks is correlated with the number
of ways that electron density can be polarized

(lower shape symmetry-more peaks)
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Optical Properties

Rules

-Stronger localization of charge-(sharper corners)
(more red-shifting)

-Stronger dipoles (higher shape symmetry) the
more intense the peaks

-Number of peaks is correlated with the
number of ways that electron density can be
polarized (lower shape symmetry-more peaks)
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Optical Properties
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1-D nanostructures display two dipole resonances:
eone transverse resonance (polarized along the short axis) and

e one longitudinal resonance

a)
o |

100-nm :

Q0o

When the diameter is held constant, increasing the length will red-
shift the position of the longitudinal resonance while the transverse

resonance will remain unaltered. ¢
2



Nanoparticles as catalysts UNIVERSITY OF
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Calculated oxygen chemisorption energies Catalytic activities for CO oxidation at 273 K
on a selection of transition metals. as a function of Au nanoparticle size.

Why gold particles have catalytic properties ?

27
See Nanotoday 2007, 2, 14.
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Nanoparticles as catalysts
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Low-coordinated gold atoms are located at the edges and in particular at the corners of the
cluster. The fraction of corners is significantly increased in nanoparticles below 4 nm.

Shape determines the number of atoms located
at the edges or corners, which can have a
profound effect on catalytic performance




Coulomb Blockade: Single Electron Transistor hUNNERS,TY OF
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Gold
Nanoparticles

Gold
NanoElectrode e

Coulomb
staircase

Current

a00 nm le -
Voltage

T. Sato and H. Ahmed 'Observation of a Coulomb staircase in electron transport through a

molecularly linked chain of gold colloidal particles' Appl. Phys. Letts., 1997, 70, 2759-2760 29



Generating heat release (mechanism)

See Govorov et al. Nanotoday, 2007, 30
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A laser electric field strongly drives mobile carriers inside the nanocrystals



Generating heat with metal nanoparticles

gold

nuclei
cell

P T O © O nanoparticles
SRS
N

cell <« _
increase in the

death local temperature
2-3°C

nuclei

UNIVERSITY OF

absorb light and
convert it into

nanoparticles
heat

Govorov et al. Nanotoday 2007, 2, 30-38

Southampton
gold
nanoparticle
laser
light
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Endothelial cells incubated with nanoparticles and treated with a pulse laser

Sout
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Gold nanocages were used in this experiment

Nanolett, 2011, 11 (3), 1358-1363 32



UNIVERSITY OF

Southampton

Other applications that employ generated heat by nanoparticles ?

33



Other applications SOUtHJg\ﬁ?Bt%n

-Photothermal Imaging: Heating can create changes in the surrounding material’s
refractive index which can be recorded optically .

—Polymer capsules with captured nanoparticles can release their cargo.

Before opening After opening

g |

b

34
Unpublished data- Wolfgang Parak, University of Marburg



-Vaporization of water and optofluidic effects.

PNP
(nanocrescent)
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Nature materials, 2006, 5, 27
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Photothermal nanoparticles (PNP) -activated
optofluidic flow. The principle of the optically
controlled advance of the liquid-air interface.
First, the focused light illumination on the PNPs
increases the local temperature of the liquid and
leads to water evaporation at the liquid-air
interface. Second, the vapour in the relatively cold
air condenses into droplets in front of the liquid-
air interface. Third, the droplets coalesce with the
original bulk liquid body and the liquid-air
interface advances. The processes are repeated as
the light is translated, so the optofluidic flow can
be continuous.

35
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Revision Southampton

What are nanoparticles?

Why nanoparticles are important?

Explain why the nanoparticles have different properties than the bulk and discuss some.
Discuss the optical properties of metal nanoparticles.

a) How the size affect the optical properties of gold particles?

b) How the shape affect the optical properties of silver particles?

Why gold particles have catalytic properties?

What is coulomb blockade? What is coulomb staircase?

How we can generate heat using metal nanoparticles? Discuss three applications.

36
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Write few sentences on why the size change (from bulk to the
nanoscale) influence the properties of a material ? Give one example
of a property that changes.

37
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Answer:

There are two major effects, which are responsible for different properties of the bulk material to the materials at the
nanoscale.

First, in nanoscale materials the number of surface atoms is a large fraction of the total.

Second, the intrinsic properties of the interior of nanocrystals are transformed by quantum size effects

Changes arise through systematic transformations in the density of electronic energy levels as a function of the size of
the interior, known as quantum size effects. Nanocrystals lie in between the atomic and molecular limit of discrete density
of electronic states and the extended crystalline limit of continuous bands.

A property that changes to nanocrystals is that the melting temperature of a nanocrystal is lower than the melting
temperature of the bulk. 38
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Semiconductor nanoparticles
1-VI, I1-V

39



Size dependent optical properties- NIVERSITY OF

Semiconductor nanocrystals Southampton
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Where is the fluorescence comes from?
Why the optical properties are different in comparison to metal nanoparticles

41



Development of Band Structure in Solids
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W. J. Parak, L. Manna, F. C. Simmel, D. Gerion, P. Alivisatos, Quantum Dots, in
Nanoparticles - From Theory to Application, G. Schmid, Editor. 2004, Wiley-VCH: 42
Weinheim. p. 4-49.



Energy

Metals vs Semiconductors
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Density of States
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Density of states in metal (A) and semiconductor (B)
nanocrystals. In each case, the density of states is
discrete at the band edges. The Fermi level is in the
center of a band in a metal, and so kT will exceed the
level spacing even at low temperatures and small
sizes. In contrast, in semiconductors, the Fermi level
lies between two bands, so that the relevant level
spacing remains large even at large sizes. The
HOMO-LUMO gap increases in semiconductor
nanocrystals of smaller size.
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Relation of band gap to size of nanocrystals
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Quantum Size Effect: Brus’ Equation UNIVERSITY OF
Southampton

E,(d) = E;(bulk) + h*/2m*d* — 1.8 e*/2necqd
1/m" =1/me+ 1/my,

pot pot

Epot=0 — E =0
d

A
v

This very simple model of the “particle in a box” allows to estimate
the size dependent band gap of semiconductor Q-particles.

45
L.E. Brus, J. Chem. Phys. 79. 5566 (1983)
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4 - CdSe nanoparticles
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W. J. Parak, L. Manna, F. C. Simmel, D. Gerion, P. Alivisatos, Quantum Dots, in
Nanoparticles - From Theory to Application, G. Schmid, Editor. 2004, Wiley-VCH:
Weinheim. p. 4-49.
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Shape-dependent optical properties
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The band-gap depends on the arm diameter Southampton
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Highly fluorescent particles SoutﬁglernRSBt%n

absorbance, PL intensity [a.u.]

photon energy [eV]

Cas]

Scheme 2.1. Schematic representation of band structure of core shell CdSe'ZnS and

CdSe/CdS nanocrystals



Applications of semiconductor colloidal nanoparticles HJN,VERS,TY OF
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-Quantum dot lasers, research for quantum computers
-single photon sources

-Light emitting devices

—Fluorescent bio-labels

-Photovoltaics

Bio-labels

-Advantages of QDs against fluorescent organic dyes

-Size tunable fluorescence emission

-Narrow symmetrical line profile compared to organic dyes

(detection of multiple fluorophores by excitation of a single light source)

-PL lifetimes are long (20-50 ns) (allows cell imaging without fluorescent noise)
-Stability against photo-bleaching , large molar extinction coefficients

-High quantum vyield

-Large surface to volume ratio

-Long term tracking of biological processes

Nanotoday 2005, 2, 20 50



Examples:

In vitro- labelling of cell components

Mouse 3T3 fibroblasts labelled with CdSe quantum
dots. Red photoluminescence dots where designed
to target the cytosketal filaments. Green — emitting

where designed to bind to the cell nucleus.

UNIVERSITY OF

Southampton

In vivo-detect cancer cells and drug release

Tumors

Injection
site

Multifunctional dots could target cancer cells,
followed by drug release triggered by laser light,
so that only tumor cells receive the toxin,
minimizing side effects.

Nanotoday 2005, 2, 20 51



Photovoltaics
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Solar cell is a device that converts sunlight (light energy) into electrical energy.

[Absorptlon ]
" \
ITO
Exciton
Charge
separation
Semiconductor or organic material
Solar cells Charge
transport
e Based on thin film deposits of semiconductors

e Based on polymers or inorganic nanocrystals
e Mixture of polymers and nanocrystals (low cost, high efficiency, low toxicity) °=



Nanocrystal-polymer solar cells UNIVERSITY OF
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53
Alivisatos and co-workers Science, 2002, 2425-2427.



Photovoltaics based on semiconductor nanocrystals UNIVERSITY OF
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What are the optical properties of semiconductor dots?
How the optical properties of semiconductor dots depend on their size?

What is the difference between the absorbance band of metal nanoparticles
and semiconductor particles?

How we can calculate the band gap of a semiconductor particle?
How is the absorption band of a tetrapod changes with increase in size or thickness?
How we can increase the fluorescence of a semiconductor particle?

Name some applications of semiconductor dots and discuss in more
detail at least two of them.
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